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TECHNICAL REPORT

Abstract

This report summarizes the research carried out under Grant F49620-03-1-0201 on the
development of least-squares based finite element models of viscous compressible and
incompressible flows as well as shear deformable plates and shells. The main objec-
tive of this research was to develop a robust and accurate computational methodology
based on least-squares variational principles for the numerical solution of the equa-
tions governing plates and shells and viscous incompressible and compressible fluid
flows. The use of least-squares principles leads to a variationally unconstrained min-
imization problem, where compatibility conditions between approximation spaces -
such as inf-sup conditions - never arise. Furthermore, the resulting linear algebraic
problem will always have a symmetric positive definite (SPD) coefficient matrix, al-
lowing the use of robust and fast preconditioned conjugate gradient methods for its
solution. In this research, the basic theory of least-squares finite element formulations
of the equations governing viscous incompressible flows and shear deformable theories
of plate and shell structures was carried out and their application through a variety of
benchmark problems was illustrated. In the case of fluid flows, penalty least-squares
finite element models using high p-levels and low penalty parameters were developed
as a good alternative to mixed least-squares finite element models, also developed in
the research.

The new computational methodology offers many theoretical and practical advan-
tages over traditional finite element formulations. In the context of solid mechanics,
least-squares formulations are found to be robust for the bending of thin and thick
plates, effective for the analysis of shell structures in bending and membrane domi-
nated states, and yield accurate predictions of generalized displacements and stress
resultants. In the context of fluid flows, least-squares formulations (both mixed and
penalty models) have been implemented for viscous incompressible fluid flows. Mixed
least-squares models are also implemented for compressible flows. In the mixed and
penalty finite element model of viscous incompressible flows, high-order expansions
are used to construct the discrete model. The element-by-element method and a
matrix-free version of the conjugate gradient method with a Jacobi preconditioner
are used to solve the linear system of equations. Numerical simulations are carried
out for a number of two-dimensional benchmark problems, e.g., flow over a backward
facing step and steady flow past a circular cylinder. The effect of penalty parameter
on accuracy and computational cost is investigated thoroughly for these problems.
The least-squares models are well suited for large scale computations and robust for
moderately high Reynolds number and high Mach number flow conditions as well as
for thick and thin structures.
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We find that the k-version of least-squares (with k = 1), achieves equally accurate
results when compared with formulations with k = 0, at a lower degree-of-freedom
count. However, the construction of the k = 1 basis in the general multi-dimensional
setting by one-dimensional tensor products has undesirable properties. For example,
for geometrically distorted elements the spectral convergence property is lost. We
proposed in this research the weak-enforcement of k = 1 continuity through the
least-squares functional. In other words, the jump of the primary variables and
their derivatives across inter-element boundaries is minimized in a least-squares sense,
through the least-squares functional. This allows the use of practical k = 0 basis
at the element level, and we achieve k = 1 continuity globally. In addition, the
formulation naturally allows for geometric and basis non-conformities across inter-
element boundaries.

1 Introduction

In the past few years finite element models based on least-squares variational princi-
ples have drawn considerable attention (see, e.g., [1, 2]). In particular, given a partial
differential equation (PDE) or a set of partial differential equations, the least-squares
method allows us to define an unconstrained minimization principle so that a finite
element model can be developed in a variational setting. The idea is to define the
least-squares functional as the sum of the squares of the equations residuals measured
in suitable norms of Hilbert spaces. Assuming the governing equations (augmented
with suitable boundary conditions) have a unique solution, the least-squares func-
tional will have a unique minimizer. Thus, by construction, the least-squares func-
tional is always positive and convex, ensuring coerciveness, symmetry, and positive
definitiveness of the bilinear form in the corresponding variational problem. More-
over, if the induced energy norm is equivalent to a norm of a suitable Hilbert space,
optimal properties of the resulting least-squares formulation can be established.

However, an optimal least-squares formulation may result in an impractical finite
element model. The reconciliation that must exist between practicality and opti-
mality in least-squares based finite element models is of great importance and was
first recognized by Bochev and Gunzburger [3, 2]. The practicality of the resulting
finite element model is, to a large extent, determined by the complexity of algorithm
development and CPU solve time of the resulting discrete system of equations. Typ-
ically, the practicality is measured in terms of Ck continuity/regularity of the finite
element spaces across inter-element boundaries. Ideally, a least-squares finite element
model with "C' practicality" and full (mathematical) optimality is to be developed
- unfortunately, this can seldom be achieved in a satisfactory manner.

Conforming discretizations require that the finite element space be spanned by
functions that belong to the Hilbert space H2,, in contrast to weak form Galerkin
models which require only H'm regularity (due to the weakened differentiability re-
quirements induced by the integration by parts). For the least-squares model, this
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implies a minimum of C' regularity of the finite element spaces across inter-element
boundaries for m = 1.

To reduce the higher regularity requirements, the PDE or PDEs are first trans-
formed into an equivalent lower order system by introducing additional indepen-
dent variables, sometimes termed auxiliary variables, and then formulating the least-
squares model based on the equivalent lower order system. The additional variables
imply an increase in cost, but can be argued to be beneficial as they may represent
physically meaningful variables, e.g., fluxes or stresses, and will be directly approxi-
mated in the model. Such an approach, is believed to be first explored by Jespersen [4]
and is the preferred approach in modern implementations of least-squares finite el-
ement models. For 2nd order PDEs, an equivalent first-order system is introduced,
and if the least-squares functional is defined in terms of L2 norms only, the finite
element model allows the use of nodal/modal expansions with merely C' regularity.

We also investigate a least-squares formulation where the "CO practicality" is
relaxed and finite element spaces are allowed to retain higher regularity across inter-
element boundaries. Such formulations do not require that auxiliary variables be
introduced. We present a formulation where C1 continuity is enforced in a weak
sense through the least-squares functional thus still allowing the use of practical
C' nodal/modal element expansions. The latter approach naturally allows for h-
and p-type non-conformities in the computational domain and may be viewed as a
discontinuous least-squares finite element formulation.

In this report we give a brief overview of the work. Specifically, in Section 2
we present least-squares formulations using a unified approach for an abstract initial
boundary value problem, which could represent a mathematical model describing
fluid flow or the deformation of a solid structure. In Section 3 we present applications
to fluid mechanics, for viscous incompressible flows, and in Section 4 applications
to solid mechanics, for shear-deformable shell structures. We refer the reader to
the journal publications under the grant for additional details on applications to
incompressible and compressible flows [5, 6, 7, 11, 12], plates and shells [8, 9], and
radiative transfer [10].

2 An abstract least-squares formulation

In this section we present the steps involved in developing and arriving at a least-
squares based finite element model. We wish to present the procedure in a general
setting, and to this end present the procedure in the context of an abstract initial
boundary value problem.

2.1 Notation

Let 0 be the closure of an open bounded region Q in Rd, where d = 2 or 3 represents
the number of space dimensions, and x =(x 1,... , Xd) = (x, y, z) be a point in Q =
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Q U 09Q, where &Q = F is the boundary of Q.

For s > 0, we use the standard notation and definition for the Sobolev spaces
H- (Q) and Hs (F) with corresponding inner products denoted by (., .)s,, and (., ")s,r
and norms by 11 11,,n and I 1,r, respectively. Whenever there is no chance of
ambiguity, the measures Q and F will be omitted from inner product and norm
designations. We denote the L2 (Q) and L2 (F) inner products by (., . and (., ")r,
respectively. By Hs (Q) we denote the product space [HS (Q)]d.

2.2 The abstract problem

Consider the following abstract initial boundary value problem:

t(u) + (u) = f in Q x(0,T(1)

g(u) = h on F x (0, T] (2)

in which £t and L. are partial differential operators in time and space respectively,
acting on the vector u of unknowns. For example, a transient scalar Poisson equation
would have £t(u) = &u/&t and (U) = -V 2u.

The vector valued function f is a known forcing function, g is a trace operator
acting on u, and h represents a known vector valued function on the boundary. We
assume initial conditions are given such that the problem is well posed and a unique
solution exists.

2.3 A first-order system least-squares (FOSLS) formulation

The L 2 least-squares functional associated with the abstract initial boundary value
problem is constructed by summing up the squares of the equations residuals in the
L2 norm and is given by

J(u;f,h) 0 ( (u)+£(U) -f 7 + 1 9(u) - h II0,r×(,) (3)

It is easy to see that the minimizer of (3) solves (1)-(2) and viceversa.

Note that in defining the FOSLS functional we must make two restrictions: (1)
the temporal and spatial partial differential operators and trace operator are at most
of first-order and (2) the least-squares functional is defined exclusively in terms of L 2
norms. These restrictions are necessary in order to ensure a pre-determined level of
practicality in the resulting least-squares based finite element model: specifically, the
permission to use finite element spaces with merely CO regularity across inter-element
boundaries.

If the partial differential equations (PDEs) under consideration are not of first-
order, the "CO practicality" of the least-squares based finite element model comes at
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an extra cost, implied in restriction (1); which requires that the partial differential
operators be of first-order. This can always be achieved by introducing auxiliary
variables until a first-order system is attained. The added cost might be viewed as
beneficial, in the sense that the auxiliary variables may have physical relevance to the
problem under consideration, e.g., fluxes, vorticity, or stresses.

2.4 A discontinuous least-squares (DLS) formulation

In the discontinuous least-squares formulation the functional is defined at the element
level, so that jumps across inter-element boundaries may be minimized in the least-
squares sense and global weak Ck, k > 0 is achieved:

N.1

J(u;f,h) = Je(ue;f,h);
e=1

Je (u'; f, h) = £(ue) + ,(U) f 0, ]

+ I1 (u) h o+E -n Ilk, E ) (4)
a

where the superscript a denotes abutting elements to element e.

Unlike the FOSLS formulation, the partial differential operators need not be re-
duced to first-order provided the index k in the last residual measure minimizing
jumps across inter-element boundaries is at minimum k = n - 1, where n is the order
of the partial differential operator. In addition, practical Co basis may be used in this
formulation, although even simpler L2 subspaces would suffice. For n > 1, higher con-
dition numbers are associated with this formulation due to the higher differentiability
requirements.

2.5 Time stepping

2.5.1 Space-time coupled approach

Note that prior to defining functionals (3) or (4) we did not replace the temporal
operator with a discrete equivalent. This results in a fully space-time coupled for-
mulation, implied in the definition of functionals (3) or (4) where the L2 norm is
defined in space-time, i.e. II • JIo,Ox(o,,] denotes the L2 norm of the enclosed quantity
in space-time:

Ilul0,a~ol = lul dQ dr.

0 Q

This implies, for example, that a two-dimensional time-dependent problem will be
treated as a three-dimensional problem in space-time domain. When dealing with
the stationary form of the equations the integral over time domain is simply dropped.
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In the space-time coupled approach, the effects of space and time are allowed to
remained coupled. There is no approximation of the initial boundary value problem.
Instead, a basis is introduced in time domain to represent the time evolution of the
independent variables.

Invariably, we as analysts would like to simulate and study the time evolution of
an initial boundary value problem for large values of time. Taking into considera-
tion modelling issues, we realize that this would require a space-time mesh with a
large number of elements in time domain. The size of the resulting set of assembled
algebraic equations could be large and prohibitively expensive in terms of available
computer memory and non-optimal in terms of CPU solve time. To alleviate the
drawbacks, we adopt a time-stepping procedure in which the solution is obtained for
space-time strips in a sequential manner. The initial conditions for the current space-
time strip are obtained from the latest space plane from the previous space-time strip.
Hence, for each space-time strip we solve a true initial boundary value problem, by
minimizing the following (e.g. FOSLS) functional in space-time domain:

J (u;f,h) i (lt(u) +£x(U) - f0, ,+

+ II g(u) - h 0Iorx[t•,t•+i]) (5)

where the interval [t,, t,+l] can be taken arbitrarily large, i.e., there are no restrictions
on the size of the interval. Additional details on this time stepping approach may be
found in Pontaza and Reddy [6].

2.5.2 Space-time decoupled approach

Alternatively, the temporal operator can be represented by truncated Taylor series
expansions in time domain, e.g. a backward Euler or trapezoidal rule approximation.
First, the temporal operator in Eq. (1) is replaced by the discrete approximation:

Lt(U) C LAt(Us+l, us-q) , q = 0, 1, 2,...

where the time increment dependence of the discrete operator is explicit as well as
its dependence on histories of previous time steps. For example, for Lt(u) = &u/&t a
(backward Euler) first-order approximation would be CAt(u) = (us+l - u5)/At.

To march the problem in time, we must minimize the following (e.g. FOSLS)
functional at each time step:

J1 t (u; f, h) = 1 ii £Ct(us+l,us-) + £x(Us+l) - fS+l S12
+ II g(Us+l) -U as+1 0, (),) (6)

where the dependence on the time increment At =t,+ - t, is evident. This time
stepping approach obviously has associated with it a much lower computational cost
when compared with the space-time coupled approach, as the dimensionality of the
problem is not increased.
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2.6 The variational problem

Having defined the least-squares functional, the abstract least-squares minimization
principle can be stated as:

find u E X such that J (u; f, h) < J (v; f, h) Vv G X (7)

where X is a suitable vector space, e.g. X = H1 (0) for a FOSLS space-time decou-
pled formulation.

The Euler-Lagrange equation for this minimization problem is given by the fol-
lowing variational problem:

find u E X such that B (u,v) = jr(v) Vv E X (8)

where B is a symmetric form given by

B(u, v) = (L(u),L(v))o + (9(u),g(v))r

and Y is a functional given by

.F(v) = (f,L(v))n + (h,g(v))r

where £ = £•At + L,.

The inclusion of the boundary residual in the least-squares functional allows the
use of spaces X that are not constrained to satisfy the boundary condition (2). In
such a case, the boundary condition (2) is enforced in a weak sense through the least-
squares functional. This is a tremendous advantage of least-squares based formula-
tions, as it allows boundary conditions that are computationally difficult to impose to
be efficiently included in the least-squares functional. An example where this prop-
erty becomes extremely useful is for viscous or inviscid compressible flow, where
characteristic-based boundary conditions need to be prescribed at outflow/inflow
boundaries. Of course, if the boundary condition (2) can be easily imposed and
included in the space X, we omit the residual associated with the boundary term in
the least-squares functional.

The abstract expressions given above for the symmetric form B and functional Y
are only valid when the partial differential operators are linear. For the case when
the partial differential operators are nonlinear, the following more general expressions
apply

B(u, v) = (LC(u), 6 (u)) + (9(u), rg(u))r

and
Y(v) = (f, 6 £(u))Q + (h, 6 9(u)) r

where it is understood that 6 u = v. In general, when the partial differential operators
are nonlinear, the resulting form will be non-symmetric. Symmetry of the form is
restored only when the Euler-Lagrange equation is linearized by Newton's method.
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2.7 The finite element model

The finite element model is obtained by either restricting (8) to the finite dimensional
subspace Xhp of the infinite dimensional space X, or equivalently by minimizing (3)
with respect to the chosen approximating spaces. This process leads to the discrete
variational problem given by

find uhp E Xhp such that B (uhP, vhP) = F (vhp) Vvhp C Xhp (9)

We proceed to define a discrete problem by choosing appropriate finite element
subspaces for each of the components of the vector valued function u. There are
no restrictive compatibility conditions on the discrete spaces, so we choose the same
finite element subspace for each of the primary variables.

2.8 Nodal/modal expansions

We present in this section some details on the high-order nodal/modal expansions
used in this work. Advantages of using high-order methods include [13, 5, 6]: ex-
ponentially fast decay of error measures for smooth solutions, small diffusion and
dispersion errors, better data volume over surface ratio allowing for high efficien-
cies in parallel processing, and higher efficiency/accuracy in long time integration of
unsteady problems.

In a modal expansion, the finite element spaces are spanned by tensor products
of the one-dimensional Co p-type hierarchical basis

12- i i=1
)= (L--1) (12_) p_ 2<i<p, p_Ž2 (10)

±12- i=p+l

In definition (10), Pf'fO are the Jacobi polynomials of order p. We use ultraspheric

polynomials corresponding to the choice a =,3 with a = 3 = 0 or 1.

Figure 1 shows the one-dimensional modal basis for the case p = 5. The linear
basis or "hat-functions" ensure the C' continuity requirement across element bound-
aries and the p-bubbles hierarchically enrich the finite element space. Note that by
construction the p-bubbles vanish at • = -1, + = ±1 and have no nodes associated
with them.

In a nodal expansion, the finite element spaces are spanned by tensor products of
the one-dimensional Co spectral nodal basis

(ý - 1)(ý + 1)L+(•)
h()=p(p + 1)Lp(6i)(6 - )

In Eq. (11), Lp = P-,0 is the Legendre polynomial of order p and ýi denotes the
location of the roots of (6 - 1)(ý + 1)L4(6) = 0 in the interval [-1, 1]. The set of
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Figure 1: C' p-type hierarchical modal basis. Shown is the case of p = 5. The
p-bubbles are scaled by a factor of 4, for viewing ease.
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Figure 2: CO p-type (spectral) nodal basis. Shown is the case of p = 4.

points {Ji}jil are commonly referred to as the Gauss-Lobatto-Legendre (GLL) points.

Figure 2 shows the one-dimensional nodal basis for the case p = 4. The location
of the nodes coincides with the roots of the aforementioned Legendre polynomial and
thus receives the name of a "spectral" basis. The Kronecker delta property is evident
from the figure and is an attractive feature of this basis, as the coefficients coincide
with nodal values.

3 Viscous incompressible fluid flows

The numerical solution of the incompressible Navier-Stokes equations using least-
squares based finite element models is among the most popular applications of least-
squares methods. Least-squares formulations for incompressible flow circumvent the
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inf-sup condition, thus allowing equal-order interpolation of velocities and pressure,
and result (after suitable linearization) in linear algebraic systems with a SPD coef-
ficient matrix. This translates into easy algorithm development and leads to the use
of robust and fast iterative solvers, resulting in substantial improvements over the
traditional weak form Galerkin finite element model - where the finite element spaces
for velocities and pressure must satisfy an inf-sup compatibility condition and one
must deal with an un-symmetric and indefinite coefficient matrix.

3.1 The incompressible Navier-Stokes equations

We consider the solution of the Navier-Stokes equations governing incompressible
flow, which in dimensionless form can be stated as follows:

Find the velocity u (x, t) and pressure p (x, t) such that

-- + ±(u- V) u + Vp - V2u = f in Q x (0, T] (12)

at Re

V.u = 0 in Q x (0,T-] (13)

u (x, 0) =u (x) in Q (14)

u =us on F,, x (O, r] (15)

fi.a = on Ff x (0, T] (16)

where F = F,, U Ff and F,, n F = 0. Re is the Reynolds number, V-°u = 0, f
is a dimensionless force, fi is the outward unit normal on the boundary of Q, uW
is the prescribed velocity on the boundary F,,, f are the prescribed tractions on
the boundary Ff, and in Eq. (14) the initial conditions are given. The conditions
on the boundary Ff in Eq. (16) are used to model outflow conditions, with - =

-pI + (1/Re) Vu and fS 0.

As discussed in the previous section, in a FOSLS formulation the governing equa-
tions must be recast as an equivalent first-order system. This will allow the use of
practical CO basis in the finite element model. We use a vorticity-based first-order
system, using w = V x u, and in view of the vector identity

V x V x u = -V 2 u+V(V.u)

and the incompressibility constraint given in Eq. (13), the non-stationary Navier-
Stokes equations, Eqs. (12)-(16), can be replaced by their first-order system equiva-
lent:

Find the velocity u (x, t), pressure p (x, t), and vorticity w (x, t) such that

au 1
-- (u.V)u+VP+WeeVXW=f in Q x (0, -] (17)

w-Vxu=0 inQx(0,,r] (18)
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V u = 0 in Q x (0,r•] (19)

V.w = 0 in Q x (0,r] (20)

u(x, 0) = °u(x) in Q (21)

U = US on rL, x (0,r] (22)

w = W, on L,, x (0, T-] (23)

f. -a = fP on Lf x (0, T] (24)

where r,, n r, = 0, i.e. if velocity is specified at a boundary, vorticity need not be
specified there. This implies that no artificial boundary conditions for vorticity need
to be devised at boundaries where the velocity is specified.

Other first-order systems are also possible, e.g. a stress-based first-order system
or a velocity gradient based first-order system. Recasting the governing equations as
a first-order system is not necessary when using the DLS formulation.

3.2 Numerical examples

3.2.1 Kovasznay flow

The first benchmark problem to be used for the purposes of verification is an ana-
lytic solution to the two-dimensional, stationary incompressible Navier-Stokes due to
Kovasznay [14]. The spatial domain in which Kovasznay's solution is defined is taken
here as the bi-unit square 2 = [-0.5,1.5] x [-0.5, 1.5]. The solution is given by

u(x, y) = 1 - e" cos(27y)

v(xy) = A eAx sin(27ry) (25)
27

1 e2Ax
AX, Y) = .Po - e

2

where A = Re/2 - (Re2 /4 + 47r2 )1/2, P0 is a reference pressure (an arbitrary constant),
and we choose Re = 40.

Figure 3 shows p-convergence curves of the velocity field in the H1 norm as a

function of total number of degrees of freedom for the different formulations.

We see that spectral convergence of the velocity field is realized for all the formu-
lations. However, the FOSLS formulations have a higher degree of freedom count due
to the auxiliary variables used to recast the governing equations as an equivalent first-
order system. From the numerical results it might appear that the DLS formulation is
the formulation of choice. However, due to the higher order operators involved in the
DLS formulation (e.g. the V 2 operator), the conditioning of the resulting coefficient
matrix is higher.
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Figure 3: Convergence of the velocity field to the Kovasznay solution in the H1 norm
for FOSLS and DLS formulations.

3.2.2 Flow past two circular cylinders in a side-by-side arrangement

We consider two-dimensional flow of an incompressible fluid past two circular cylinders
in a side-by-side arrangement. Both cylinders are equal in size, with diameter D, and
face the free-stream. The flow around such an arrangement is characterized by three
distinct flow regimes, depending on the gap size S between cylinder surfaces [15, 16].

The cylinders are of unit diameter and are at a distance S/D = 0.85 of each other.
The simulation is carried out using a space-time coupled formulation. The connected
model in space-time, (h X [ts, t,+1 ], consists of 762 finite elements in space and a single
element layer in time. Figure 4 shows the connected model in space and a close-up
view of the geometric discretization around the circular cylinders.

We use nodal expansions with pý = p, = 4 and py = 2 in each element, i.e.
fourth-order expansions in space and a second-order expansion in time, resulting in
Ndof =-- 149, 508 for a space-time strip. At each Newton step the linear system of
algebraic equations is solved using the matrix-free conjugate gradient algorithm with
a Jacobi preconditioner. For the time marching procedure the size of the time step,
At = t++1 - t,, was chosen as At = 0.20. We consider a Reynolds number of 100,
based on the free-stream velocity and cylinder diameter.

At the upstream boundary of the computational domain both velocity components
are assigned free-stream values: u = u, = 1 and v = 0. At the lateral boundaries
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Figure 4: Computational domain and mesh for flow past two circular cylinders in a
side-by-side arrangement, S/D = 0.85. (a) Connected model, 0h. (b) Close-up view
of the geometric discretization around the circular cylinders.

a no-flux boundary condition is imposed: cu/Oy = 0 and v = 0. No-slip boundary
conditions are specified at the cylinder surface: u = v = 0. The outflow boundary
condition is imposed in a weak sense through the least-squares functional.

At this gap size, we did not see (or expected) a well-defined periodic steady state.
The simulation was thus carried out for t G [0,400], by which time the flow exhibited
"well-developed" characteristics such as intermittent bistable gap jets and amalga-
mation of gap vortices leading to the formation of a single large-scale vortex street.

Figure 5 shows instantaneous vorticity contours at (a) t = 314 and (b) t = 352,
at which times the gap jet is "shooting" upwards and downwards respectively. In
accordance with the experimental visualizations of Williamson [15], a single large-scale
vortex street is formed downstream of the cylinders, by virtue of vortex interactions
in the near-wake of the cylinders. Gap vortices from both cylinders are squeezed and
amalgamated with dominant outer vortices, predominantly towards the narrow-wake
side (the gap jet "shooting" direction).

In Fig. 6 we plot the force coefficient associated with the repulsive force expe-
rienced by the circular cylinder whose center is located at (x, y) = (0, -0.925). At
early times, 0 < t < 125, we see a well-defined shedding frequency, due to shedding
synchronization in antiphase. For t > 150, the flow becomes asymmetric due to the
bistable biased gap flow.

The value of the L2 least-squares functional for remained below 10' throughout
the time marching procedure, meaning that conservation of mass and momentum
are being satisfied to within 10-a at all times - implying a time-accurate numerical
simulation.
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Figure 5: Instantaneous vorticity contours for the flow around two circular cylinders
in a side-by-side arrangement with a gap size of S/D = 0.85 and ReD = 100.
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Figure 6: Time history of repulsive (lift) coefficient experienced by the circular cylin-
der whose center is located at (x, y) = (0, -0.925).
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4 Shear-deformable shells

Finite element formulations for the analysis of plates and shell structures are tradition-
ally derived from the principle of virtual displacements or the principle of minimum
total potential energy [17, 18]. When considering the limiting behavior of a shell as
the thickness becomes small, for a given shell geometry and boundary conditions, the
shell problem will in general fall into either a membrane dominated or bending dom-
inated state - depending on whether the membrane or bending energy component
dominates the total energy. Displacement-based finite element models have no major
difficulties in predicting the asymptotic behavior of the shell structure in the mem-
brane dominated case. However, computational difficulties arise in the case when the
deformation is bending dominated. A strong stiffening of the element matrices occurs,
resulting in spurious predictions for the membrane energy component. This phenom-
enon is known as membrane-locking. In shear-deformable shell models, yet another
form of locking occurs and presents itself (again) in a strong stiffening of the element
matrices, resulting in spurious predictions for the shear energy component. This form
of locking is also present in plate bending analysis when the side-to-thickness ratio
of the plate is large (i.e., when modelling thin plates). This locking phenomenon is
known as shear-locking.

Least-squares finite element formulations for plates and shells. have been shown
to be robust with regards to membrane- and shear-locking and to yield highly ac-
curate results for displacements as well as stresses (or stress resultants) [8, 9]. The
formulations retain the generalized displacements and stress resultants as indepen-
dent variables and, in view of the nature of the variational setting upon which the
finite element model is built, allows for equal-order interpolation. In the following
we present numerical results for a barrel vault (cylindrical shell) loaded by its own
weight.

4.1 Governing equations

We consider circular cylindrical shells, where the shell mid-surface S is given by

={-L < x < L, x2 +x2 = R 2I(x1,x 2, x3) e IR3 } c R3 , (26)

where 2L and R are the length and radius of the shell. The shell mid-surface S, given
by Eq. (26), can be parametrized by the single chart = (¢1, ¢2, 0 3 ), q: Q C R 2

S J IR3

01 (ýl, 62) =61

02 (0, 62) =R sin(62/R) (27)
¢3(', 2) =R cos(62 /R)

so that Q is the rectangle occupying the region

{(61 62) e •I -L < ý' < L,-R7 < 62 < R1} c R 2  (28)
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In Naghdi's shear-deformable shell model [19, 20], the membrane, bending, and
shear strain measures (Eco, X•a, (a) are [9]

Ell = u 1,1j, 2 E12 - U 1 ,2 + U 2 ,1 , E22= U2 ,2 + U(29)
R

Xii 01,1, 2 X12 = 01,2+902,1 + U 2,1 ,X22 =02,2 + (U2,2 + U) (30)

(1=U, +0 2= U3,2+ 02- U2 (31)

and the equilibrium equations take the form

Nn N1 + pl =0 (32),1-•- 2 -' ,2 2•

N122  M' 2  M 22

,1+ ,2 + + + -Q + =0 (33)

N 22  M22(34

Q,] + Q,2 R R2 +P (34)

Ml, + M12 - Q1 0 (35)

M212, + M,42 - Q2 =0 (36)

where ua are the displacements of the shell mid-surface, U3 is the out-of-plane dis-
placement, 0c, are rotations of the transverse material fibers originally normal to the
shell mid-surface, and Nc), Maz, Qc' are the membrane, bending, and shear thickness-
averaged stress resultants. Here we employ the convention that Greek indices range
over 1 and 2 and that "," denotes differentiation.

The stress resultants are related to the strain measures through the following
constitutive relations [19]

N 1 - t E N 22  t E
(1 -

2)(Ell + V6 2 2 ), (1 - V2  
Ell + E22)

N 2  T1+ tE) E12 (37)

= t3 E Mt3- E
M11 t3E (Xll1 + V X22) ,M22 t3 (V Xll + X22)

12(1 V2 )( v 12 (1 -V 2 )

M12 t 3  (38)-12 (1+ v) 2

tE tE
Q1 _ _ K_ (1, Q2=_ Ks (2 (39)2(1l+ v) 2(1l+ v)

where t is the thickness of the shell, E is the Young's modulus, V is the Poisson's
ratio, and K, is the shear correction factor for the isotropic material. If we let R --* oo
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we recover the (linear) shear-deformable plate bending strain measures and governing
equations, where membrane and bending effects are decoupled.

The equilibrium equations (32)-(36) and constitutive relations (37)-(39) are al-
ready of first-order and are used to define the least squares functional. The least-
squares formulation and finite element model follow from the outline given in Sec-
tion 2.

4.2 Numerical example: Barrel vault

We consider a barrel vault loaded by its own weight. The barrel vault is a segment
of a circular cylindrical shell whose mid-surface, after being parametrized by (27), is
given by

Q' = (ýl, ý2) 1 -L < ý' < L, -•6ER < ý2 < L-R. (40)

The barrel vault is simply-supported on rigid diaphragms on opposite edges and is
free on the other two edges. For the described loading, geometry, and boundary
conditions, the problem is popularly known as the Scordelis-Lo roof.

By symmetry considerations, the computational domain is limited to 1/4 of the
total shell, so that

Qh {(1l 62) 10 < 61 < L, 0 < 62 < LR}. (41)

The geometry of the barrel vault is specified as follows: 2L 50 ft, R = 25 ft,
and t = 3 in., so that R/t = 100. The material is homogeneous and isotropic with
E = 3 x 106 psi and v = 0. The shear correction factor K, is specified as 5/6 and
the self-weight loading as Pz = 90 lb/ft 2 uniformly distributed over the surface area
of the vault.

The connected model, 0h C R 2 consists of a 4 x 4 finite element mesh. For
illustrative purposes we present in Fig. 7 the finite element mesh on the entire mid-
surface of the barrel vault, S C R 3 . The mesh is regular (i.e., not distorted) and
graded. We expect strong boundary layers in the stress resultant profiles along the
free and supported edges, so the mesh is graded towards those regions.

First, we present a convergence study in strain energy for increasing p-levels of
the element approximation functions. An analytic value for the strain energy is not
available, so we use instead a reference value. The reference value was obtained using
displacement based weak form Galerkin elements with a p-level of 12. Denoting by
ULrcf the reference strain energy of the barrel vault, the error measure is given by

E-I//Uref _- UhP (Uref (42)

In Fig. 8 we plot the error measure E for the least-squares formulation as a function
of the expansion order in a logarithmic-linear scale. We see from the convergence in
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strain energy curve that an accurate least-squares solution is achieved for p-levels of 6
and higher.

Table 1 shows results for the vertical displacement and stress resultants at the
center of the free edge of the barrel vault, (9, 2) (0, YR), for p-levels of 4, 6, 8,
and 10. Similarly, in Table 2 we present results for the vertical displacement and stress
resultants at the crown of the barrel vault, (p1, ý2) = (0, 0). We see from the tabulated
data that the change in point values at p-levels of 6, 8, and 10 is negligible, and thus
a converged numerical solution could be declared at p-levels of 6 or 8. The predicted
vertical deflection at the center of the free edge (Table 1) is in good agreement with
the shallow shell analytical value of 3.7032 in., the commonly used reference value for
finite element analysis of 3.6288 in. [21], and the value of 3.6144 in. obtained using
an assumed strain method in a fine mesh [22].

Rz

Y

Figure 7: Finite element mesh on the entire mid-surface of the barrel vault, S C 1R',
showing the surface coordinate system (p1, V2) E R2.
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Figure 8: Convergence of strain energy for the barrel vault problem.

Table 1: p-convergence study showing vertical displacement and stress resultants at
the center of the free edge of the barrel vault.

p level w (in.) N 11 (kip/ft) M11 (kip ft/ft)

4 -3.1208 68.3942 -0.5610
6 -3.6162 75.7476 -0.6400
8 -3.6173 75.7582 -0.6400
10 -3.6174 75.7593 -0.6400

Table 2: p-convergence study showing vertical displacement and stress resultants at

the crown of the barrel vault.

p level w (in.) N 11 (kip/ft) N 2 2 (kip/ft) M"1 (kip ft/ft) M 2 2 (kip ft/ft)

4 0.4109 -3.5870 -3.4148 0.0714 1.7597
6 0.5423 -1.5835 -3.4861 0.0959 2.0579
8 0.5425 -1.5805 -3.4862 0.0959 2.0583
10 0.5425 -1.5802 -3.4862 0.0959 2.0583
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5 Scientific Progress and Accomplishments

A new computational methodology based on least-squares variational principles and
the finite element method is developed for the numerical solution of the stationary and
non-stationary Navier-Stokes equations governing viscous incompressible and com-
pressible fluid flows and nonlinear equations governing shear deformation theories of
plate and shell structures. The use of least-squares principles leads to a variationally
unconstrained minimization problem, where compatibility conditions between approx-
imation spaces - such as inf-sup conditions - never arise. Furthermore, the resulting
linear algebraic problem will always have a symmetric positive definite (SPD) coef-
ficient matrix, allowing the use of robust and fast preconditioned conjugate gradient
methods for its solution. In the context of viscous incompressible flows, least-squares
based formulations offer substantial improvements over the (traditional) weak form

Galerkin finite element models - where the finite element spaces for velocities and
pressure must satisfy an inf-sup compatibility condition and one must deal with an
unsymmetric and indefinite coefficient matrix. In contrast, least-squares formulations
circumvent the inf-sup condition, thus allowing equal-order interpolation of velocities
and pressure, and result (after suitable linearization) in linear algebraic systems with
a SPD coefficient matrix.

A penalty least-squares finite element model is also developed as a better alter-
native to traditional penalty finite element model. Advantage of the penalty least-
squares finite element model is that it gives very accurate results for very low penalty
parameters when used with high order element expansions. It is found that the com-
puted pressure fields are continuous, and their values are found to be in excellent
agreement with published results.

We have also developed a least-squares formulation, where regularity of order k
is achieved by the weak enforcement of continuity constraints across inter-element
boundaries. This allows for the use of practical k = 0 expansions at the element
level, and can achieve any desired regularity at the global level. The formulation
naturally allows for h- and p-type non-conformities.

The following research has been accomplished:

* Developed mixed least-squares finite element models of the Navier-Stokes equa-
tions governing viscous incompressible flows.

* Developed space-time coupled least-squares finite element models of non-stationary
Navier-Stokes equations governing viscous incompressible flows.

* Developed least-squares finite element models of equations governing viscous
compressible flows.

* Developed least-squares finite element models of bending of shear deformable
plates and shells.
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"* Developed penalty least-squares finite element models of the stationary Navier-
Stokes equations governing viscous incompressible flows.

"* Developed weak k-version least-squares finite element models, allowing for h-
and p-type nonconformity.
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